3.970 \(\int \frac{x^2}{\sqrt{16-x^4}} \, dx\)

Optimal. Leaf size=21 \[ 2 E\left (\left .\sin ^{-1}\left (\frac{x}{2}\right )\right |-1\right )-2 \text{EllipticF}\left (\sin ^{-1}\left (\frac{x}{2}\right ),-1\right ) \]

[Out]

2*EllipticE[ArcSin[x/2], -1] - 2*EllipticF[ArcSin[x/2], -1]

________________________________________________________________________________________

Rubi [A]  time = 0.0152457, antiderivative size = 21, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {307, 221, 1181, 21, 424} \[ 2 E\left (\left .\sin ^{-1}\left (\frac{x}{2}\right )\right |-1\right )-2 F\left (\left .\sin ^{-1}\left (\frac{x}{2}\right )\right |-1\right ) \]

Antiderivative was successfully verified.

[In]

Int[x^2/Sqrt[16 - x^4],x]

[Out]

2*EllipticE[ArcSin[x/2], -1] - 2*EllipticF[ArcSin[x/2], -1]

Rule 307

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[-(b/a), 2]}, -Dist[q^(-1), Int[1/Sqrt[a + b*x^
4], x], x] + Dist[1/q, Int[(1 + q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && NegQ[b/a]

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[EllipticF[ArcSin[(Rt[-b, 4]*x)/Rt[a, 4]], -1]/(Rt[a, 4]*Rt[
-b, 4]), x] /; FreeQ[{a, b}, x] && NegQ[b/a] && GtQ[a, 0]

Rule 1181

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[-(a*c), 2]}, Dist[Sqrt[-c], Int
[(d + e*x^2)/(Sqrt[q + c*x^2]*Sqrt[q - c*x^2]), x], x]] /; FreeQ[{a, c, d, e}, x] && GtQ[a, 0] && LtQ[c, 0]

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rubi steps

\begin{align*} \int \frac{x^2}{\sqrt{16-x^4}} \, dx &=-\left (4 \int \frac{1}{\sqrt{16-x^4}} \, dx\right )+4 \int \frac{1+\frac{x^2}{4}}{\sqrt{16-x^4}} \, dx\\ &=-2 F\left (\left .\sin ^{-1}\left (\frac{x}{2}\right )\right |-1\right )+4 \int \frac{1+\frac{x^2}{4}}{\sqrt{4-x^2} \sqrt{4+x^2}} \, dx\\ &=-2 F\left (\left .\sin ^{-1}\left (\frac{x}{2}\right )\right |-1\right )+\int \frac{\sqrt{4+x^2}}{\sqrt{4-x^2}} \, dx\\ &=2 E\left (\left .\sin ^{-1}\left (\frac{x}{2}\right )\right |-1\right )-2 F\left (\left .\sin ^{-1}\left (\frac{x}{2}\right )\right |-1\right )\\ \end{align*}

Mathematica [C]  time = 0.002446, size = 24, normalized size = 1.14 \[ \frac{1}{12} x^3 \, _2F_1\left (\frac{1}{2},\frac{3}{4};\frac{7}{4};\frac{x^4}{16}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[x^2/Sqrt[16 - x^4],x]

[Out]

(x^3*Hypergeometric2F1[1/2, 3/4, 7/4, x^4/16])/12

________________________________________________________________________________________

Maple [B]  time = 0.005, size = 43, normalized size = 2.1 \begin{align*} -2\,{\frac{\sqrt{-{x}^{2}+4}\sqrt{{x}^{2}+4} \left ({\it EllipticF} \left ( x/2,i \right ) -{\it EllipticE} \left ( x/2,i \right ) \right ) }{\sqrt{-{x}^{4}+16}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(-x^4+16)^(1/2),x)

[Out]

-2*(-x^2+4)^(1/2)*(x^2+4)^(1/2)/(-x^4+16)^(1/2)*(EllipticF(1/2*x,I)-EllipticE(1/2*x,I))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{\sqrt{-x^{4} + 16}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(-x^4+16)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^2/sqrt(-x^4 + 16), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{-x^{4} + 16} x^{2}}{x^{4} - 16}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(-x^4+16)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-x^4 + 16)*x^2/(x^4 - 16), x)

________________________________________________________________________________________

Sympy [B]  time = 0.709392, size = 32, normalized size = 1.52 \begin{align*} \frac{x^{3} \Gamma \left (\frac{3}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{2}, \frac{3}{4} \\ \frac{7}{4} \end{matrix}\middle |{\frac{x^{4} e^{2 i \pi }}{16}} \right )}}{16 \Gamma \left (\frac{7}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(-x**4+16)**(1/2),x)

[Out]

x**3*gamma(3/4)*hyper((1/2, 3/4), (7/4,), x**4*exp_polar(2*I*pi)/16)/(16*gamma(7/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{\sqrt{-x^{4} + 16}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(-x^4+16)^(1/2),x, algorithm="giac")

[Out]

integrate(x^2/sqrt(-x^4 + 16), x)